

TO UNDERSTAND THE RESPONSIBILITY OF QUALITY ASSURANCE AND QUALITY CONTROL DEPARTMENT IN PHARMACEUTICAL INDUSTRY

Mr. Amit Ajay Kale^{1*}, Ms. Ashwini Bahir², Dr. Sunil S. Jaybhaye³, Ms. Seema Rathod⁴

Institute Of Pharmacy, Badnapur, Jalna 431202.

Dr. Babasaheb Ambedkar Technological University, Loner, Raigad.

Received: 10 November 2025

Revised: 20 November 2025

Accepted: 10 December 2025

Corresponding Author: Mr. Amit Ajay Kale

Address: Institute of Pharmacy, Badnapur, Jalna 431202.

1. ABSTRACT

The terms "quality" are used interchangeably in the medical radiology professions due to the historical and current evolution of practice, technology, terminology, and programs related to quality. Quality Control (QC), Quality Assurance (QA), and Management (QM) in colloquial terms. The purpose of this White Paper is to clarify QM, QA, and QC in the context of medical physics and to offer guidance on the proper usage of these terms in the American College of Radiology (ACR) Practice Parameters and Techni-call Standards, which can be applied to other guidance initiatives. The explanation of these complex terms in nuclear medicine, radiology, and radiation oncology environments will not only make the Medical Physics Technical Standards and Practice Parameters easier to understand and use, but they will also give ACR's clinical physician-led Practice Parameters—which also use these crucial terms for monitoring equipment performance for safety and quality—a foundation and clarity. Additionally, by offering a common framework that differentiates the different kinds of responsibilities carried out by medical physicists and others in the medical radiological environment this will support the continued development of the professional practice of clinical medical physics. Examples of how QM, QA, and QC can be used in relation to ACR Practice Parameters and Technical Standards are given.

- KEYWORDS:** medical physics, quality assurance, quality control, quality management.

2. INTRODUCTION

Maximizing the patient's clinical benefit is a cornerstone of medical practice, while minimizing risks that are related to the patient and their caregivers. Applying this principle in the various fields of radiology, radiation oncology, nuclear medicine and molecular imaging, medical physics, and different imaging-guided medical procedures may entail maximizing therapeutic gain, diagnostic image quality, and/or image guidance accuracy (relevant to treatment planning or performing medical procedures).

These The objectives of the American College of Radiology (ACR) clearly highlight the vital significance of quality and safety programs. The ACR Commission on Quality and Safety oversees and manages all radiology quality and safety initiatives and programs, including Practice National Radiology Data, Appropriateness Criteria®, accreditation programs, centers of excellence, parameters and technical standards, and quality measurements Imaging-RADS, RADPEERTM, and Registry.

The terms Quality Management (QM), Quality Assurance (QA), and Quality Control (QC) are interchangeable in the vernacular due to the historical and current evolution of the practice, technology, terminology, and implementation of programs related to quality in the radiological sciences. A well-structured and comprehensive discussion of QM, QA, and QC was presented in AAPM Report 283 (Task Group 100)2. This discussion was combined with risk analysis techniques and applied with remarkable detail for Intensity Modulated Radiation Therapy (IMRT).

This White Paper's two main goals are (a) to recapitulate the usage of these three terms and (b) to offer instances of the general application of QM, QA, and QC in medical physics, with a focus on ACR's Practice Parameters and Technical Standards. Under the direction of ACR's

3. QA DEFINATION

Pharmaceutical product safety, effectiveness, and dependability are all dependent on quality assurance (QA). It is a thorough framework of guidelines, practices, and initiatives intended to incorporate quality into each phase of the creation and manufacturing of pharmaceuticals. QA's main goal is to strengthen systems and procedures in order to prevent errors in addition to finding them.

Good Manufacturing Practices (GMP), process validation, instrument calibration, documentation control, supplier qualification, auditing, and employee training are just a few of the components that make up quality assurance.

It guarantees that all processes, from the acquisition of raw materials to the release of the finished product, are carried out in compliance with established quality standards and legal requirements. Documentation, sometimes known as "If it isn't written, it didn't happen," is another essential component of quality assurance. Traceability and accountability are ensured by appropriate documentation in batch records, SOPs, deviation reports, and change controls. Internal audits, which assist in finding gaps and putting corrective and preventive measures (CAPA) into place, are also managed by QA.

Pharmaceutical companies maintain consistent product quality, adhere to regulatory requirements, prevent manufacturing errors, and guarantee patient safety through the use of strong quality assurance systems. In the end, by ensuring high standards of quality and dependability, QA fosters trust between the manufacturer, regulatory bodies, and patients.

- **QUALITY ASSURANCE**

Fig. No. 1

- **Role of QA in the Pharmaceutical Industry**

Fig. No. 2

1. Establishing Quality Systems

QA designs and maintains key systems such as Good Manufacturing Practices (GMP), Standard Operating Procedures (SOPs), and quality policies.

2. Documentation Control

QA ensures proper documentation including Batch Manufacturing Records (BMR), deviation reports, change controls, and SOPs. Good documentation is considered “*the backbone of GMP*.”

3. Validation and Qualification

QA oversees equipment qualification, process validation, cleaning validation, and method validation to maintain reliability and reproducibility of processes.

4. In-Process Quality Control

QA reviews in-process checks to confirm that each step of manufacturing follows predefined specifications.

5. Change Control & Deviation Management

Any change in procedure, equipment, or materials must be evaluated by QA to ensure quality is not compromised.

6. CAPA (Corrective and Preventive Action)

QA implements CAPA to eliminate root causes of deviations and prevent recurrence.

7. Internal Audits

Regular audits ensure compliance with regulatory requirements and continuous quality improvement.

8. Product Release

QA gives the final approval for batch release after verifying all test results and documentation.

4. Responsibilities of Quality Assurance (QA) and Quality Control (QC)

1) Quality Assurance (QA)

1. Develop quality policies and procedures: Establish and maintain quality standards, guidelines, and procedures to ensure compliance with regulatory requirements.
2. Ensure compliance with regulatory requirements: Ensure that all aspects of the manufacturing process comply with relevant regulations, guidelines, and standards.
3. Conduct audits and inspections: Conduct regular audits and inspections to ensure compliance with quality standards and regulatory requirements.
4. Provide training and support: Provide training and support to ensure that personnel are aware of and comply with quality standards and procedures.
5. Monitor and improve processes: Continuously monitor and improve processes to ensure that they are effective and efficient.
6. Change control: Ensure that changes to processes, equipment, or materials are properly evaluated, approved, and implemented.
7. Risk management: Identify and mitigate risks associated with the manufacturing process.

2) Quality Control (QC)

1. Test and inspect products: Conduct tests and inspections to ensure that products required quality standards.
2. Release products to market: Release products to market only after they have been tested and meet required quality standards.
3. Detect and prevent defects: Detect and prevent defects or irregularities in products.
4. Investigate deviations and complaints: Investigate deviations, complaints, and adverse events, and take corrective action.
5. Maintain quality records: Maintain accurate and complete quality records, including test results, inspection reports, and certificates of analysis.
6. Stability testing: Conduct stability testing to ensure that products remain stable and effective throughout their shelf life.

7. Validate processes and methods: Validate processes and methods to ensure that they are effective and reliable.

3) Key Differences

1. Focus: QA focuses on preventing defects, while QC focuses on detecting defects.
2. Approach: QA is proactive, while QC is reactive.
3. Scope: QA covers the entire product lifecycle, while QC is typically focused on the manufacturing process.

- **Importance**

1. Patient safety: QA and QC ensure that pharmaceutical products are safe and effective.
2. Regulatory compliance: QA and QC help companies comply with regulatory requirements.
3. Product quality: QA and QC ensure that products meet required quality standards.

Fig. No. 3

#	Quality Assurance	Quality Control
1	Aims to prevent defects	Aims to identify and fix defects
2	Is a preventive technique	Is a corrective technique
3	Defines standards and procedures that need to be adhered to in order to meet customer requirements	Ensures that standards are followed while working on the product
4	Helps build processes	Helps implement the existing processes
5	Activities are determined before production work begins and performed while the product is being developed	Activities are performed after the product is developed
6	Is a managerial tool	Is a corrective tool
7	It is the duty of the complete project team	It is only the duty of the testing team
8	Comes under the category of verification.	Comes under the category of validation
9	Is a process oriented exercise	Is a product oriented exercise
10	Prevents the occurrence of issues, bugs or defects in the application	Detects, corrects, and reports the bugs or defects in the application
11	Does not involve executing the program or code	Involves executing the program or code
12	Done before Quality Control	Done only after Quality Assurance
13	Human-based checking of documents or files.	Computer-based execution of program or code
14	Is generally not a time-consuming activity	Is generally a time-consuming activity
15	Makes sure quality team is doing the right things in the right way	Makes sure that whatever the quality team has done is as per the requirement
16	Processes are planned to prevent defects	Processes are planned to discover defects and fix them

Fig. No. 4

5. Quality Control (QC) Responsibilities

A] Quality Control

1. The quality of the inventory is monitored and managed during its creation through a system of routine technical tasks known as quality control.
2. The quality control system's objective is to
3. To guarantee the accuracy, completeness, and integrity of the data, conduct regular, standard tests.
4. Find and correct mistakes and omissions.
5. Keep track of all Quality Control actions and record and preserve inventory items.

- **Quality Control (QC) Responsibilities**

Inspection & Testing: Performing physical checks, inspections, and measurements on raw materials, in-process steps, and finished products.

- **Verification**

1. Verifying that products adhere to certain standards and requirements.
2. Data Generation: Giving management and QA data to prove compliance
3. Defect Identification: Recognizing mistakes or deviations as they arise

- **Key Differences & Interplay**

1. Focus: QA is process-oriented (prevention); QC is product-oriented (detection).
2. Timing: QA is proactive (before production); QC is often reactive (during/after production).
3. Goal: QA provides confidence; QC verifies conformance.
4. Roles: QA sets the framework; QC executes checks within that framework.

Fig. No. 5

B] Application of quality control

Quality control is applied in various industries to ensure that products meet required quality standards.

- **Industry Applications**

1. Pharmaceutical industry: Ensures pharmaceutical products are safe, effective, and meet regulatory standards.
2. Food industry: Ensures food products are safe for consumption and meet quality standards.
3. Automotive industry: Ensures automotive parts and vehicles meet quality standards and are

reliable.

4. Aerospace industry: Ensures aircraft and spacecraft meet quality standards and are safe.

- **Key Applications**

1. Product inspection: Inspecting products to detect defects or irregularities.
2. Process control: Monitoring and controlling processes to ensure they operate within specified limits.
3. Testing and calibration: Conducting tests and calibrating equipment to ensure accuracy and reliability.
4. Supplier quality management: Managing supplier quality to ensure raw materials and components meet quality standards.

- **Benefits**

1. Improved quality: Ensures products meet required quality standards.
2. Increased customer satisfaction: Helps increase customer satisfaction by ensuring products are reliable and meet their needs.
3. Reduced costs: Helps reduce costs by detecting defects early and preventing waste.

6. Application of quality Assurance

Quality Assurance (QA) is a systematic process designed to ensure that products or services meet specific requirements and standards. Here are some detailed applications of QA:

1. Software Development

- Ensuring software meets requirements and is reliable
- Identifying and fixing bugs and defects
- Improving software development processes and methodologies (e.g., Agile, Scrum)

2. Manufacturing

- Improving production processes and product quality
- Reducing defects and waste
- Implementing quality control measures (e.g., Six Sigma, Lean)
- Conducting audits and inspections
- Ensuring compliance with regulatory standards (e.g., ISO 9001)

3. Pharmaceuticals

- Ensuring drug safety and efficacy
- Conducting clinical trials and testing
- Validating manufacturing processes
- Ensuring compliance with Good Manufacturing Practices (GMP)
- Monitoring and reporting adverse events

4. Healthcare

- Enhancing patient care and safety
- Improving clinical processes and outcomes
- Conducting medical audits and reviews
- Ensuring compliance with regulatory standards (e.g., HIPAA)
- Implementing electronic health records (EHRs)

5. Aerospace

- Ensuring safety and reliability of aircraft and spacecraft
- Conducting safety audits and inspections
- Implementing quality control measures (e.g., AS9100)
- Ensuring compliance with regulatory standards (e.g., FAA, EASA)
- Testing and validating aircraft systems

6. Food Industry

- Ensuring food safety and quality
- Conducting food safety audits and inspections
- Implementing quality control measures (e.g., HACCP, ISO 22000)
- Ensuring compliance with regulatory standards (e.g., FDA, FSSAI)
- Monitoring and controlling food production processes

7. Automotive

- Improving vehicle safety and performance
- Conducting quality audits and inspections
- Implementing quality control measures (e.g., IATA, ISO/TS 16949)
- Ensuring compliance with regulatory standards (e.g., ISO 26262)
- Testing and validating vehicle systems

7. CONCLUSION

In summary, QA and QC are essential components of the pharmaceutical industry, ensuring that products are safe, effective, and meet regulatory standards. QA focuses on preventing defects, while QC focuses on detecting defects. By working together, QA and QC professionals help ensure the quality and integrity of pharmaceutical products. Quality Control and Quality Assurance are two essential pillars of the pharmaceutical industry that work together to ensure the safety, purity, effectiveness, and reliability of medicines.

Quality Assurance focuses on building a strong system, implementing procedures, and preventing errors, while **Quality Control** ensures that every product meets predefined quality standards through testing, inspection, and verification. Together, QA and QC ensure that medicines are consistently produced and controlled according to regulatory requirements such as GMP (Good Manufacturing Practices). Their combined effort helps maintain customer trust, reduce risk of product failure, and support the overall goal of delivering high-quality and safe pharmaceutical products to patients.

8. REFERENCE

1. ICH Q10 Pharmaceutical Quality System. International Conference on Harmonization (ICH). Step 5 guideline, April 2009. Why: Core international guideline describing a model PQS, management responsibilities, and lifecycle approaches to pharmaceutical quality.
2. ICH Q9 — Quality Risk Management. International Conference on Harmonization (ICH). Guideline, 2005. Why: Foundational method for applying risk-based decisions across QA/QC (risk tools, applications to product quality). European Medicines Agency (EMA)
3. WHO — Quality assurance of pharmaceuticals: a compendium of guidelines and related materials. World Health Organization, 2024 (compendium / guidance collection). Why: Comprehensive WHO collection and practical guidance for regulators and manufacturers worldwide. Useful for global compliance and policy context. World Health Organization
4. WHO — TRS 957 Annex 1: Good Practices for Pharmaceutical Quality Control Laboratories. WHO Technical Report Series (Annex on QC labs). Why: Practical recommendations on QC laboratories, sampling, testing, stability programs, and lab organization — highly applicable to QC functions. World Health Organization.
5. FDA — Q8/Q9/Q10 Questions & Answers (Appendix). U.S. FDA guidance page with Q&A for ICH Q8/Q9/Q10 implementation. Why: Practical clarifications and regulatory

agency perspective on implementing quality by design, QRM, and PQS. U.S. Food and Drug Administration.

6. Graham P. Bunn (ed.), *Good Manufacturing Practices for Pharmaceuticals* (7th ed.). Routledge (publisher). Why: Comprehensive CGMP textbook covering production, QA, QC, documentation and inspection issues. Useful as a reference manual for QA policies. Routledge.
7. Sidney H. Willig, Murray M. Tuckerman & William S. Hitchings IV, *Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality Control*. Classic reference — practical GMP & QA systems. Why: Historical but practical book covering core GMP, QA roles, and implementation strategies. Document Pub.
8. WHO — *Quality assurance of pharmaceuticals: a compendium* (detailed WHO volume). WHO, full compendium with GMP, inspections, pharmacovigilance sections. Why: (Distinct listing from #3 entry's specific sections) Broad regulatory and technical collection for QA managers. World Health Organization
9. P. Dandekar, *Pharmaceutical Quality Control & Assurance in the 21st Century* (review/article, 2024). Asia Pharmaceutics / journal article. Why: Recent review of trends, advanced analytics and regulatory expectations for QA/QC modernization. Useful for staying current. Asian Journal of Pharmaceutics.
10. RM Haleem et al., *Quality in the pharmaceutical industry – A literature review* (2013). Peer-reviewed literature review summarizing quality approaches and guidelines (WHO, FDA, EU, ICH). Why: Scholarly review linking historical guidance with modern quality practices (QRM, Qods). PMC.
11. Jordi Botet, *Good Quality Practice (GQP) in Pharmaceutical Manufacturing: A Handbook* (Bentham Science, 2015). Handbook on applying GQP in manufacturing. Why: Practical handbook oriented at implementing GQP, SOPs, validation and training. EurekaSelect+1
12. James R. Harris (ed.), *Pharmaceutical Manufacturing Handbook* (Wiley, 2007). Collection of chapters on GMP, QA systems, control strategies. Why: Technical resource for manufacturing and QA engineers covering regulatory-based controls and process design. Wiley Online Library.
13. Textbook — *A Textbook of Pharmaceutical Quality Assurance* (various editions). Academic textbook covering QA theory, GMP, validation, QC labs, documentation. Why: Useful for students and new QA hires to learn roles, SOPs, and documentation practices. BS Publications.
14. Practical SOPs / departmental guidelines: *SOP – Responsibilities of Quality Control*

Department (Pharma state Academy SOP example, 2019). Online SOP template and duties list for QC departments. Why: Practical SOP-style checklist for QC tasks (reagent prep, sample planning, GLP maintenance) — good implementation reference. Pharma State Academy.

15. Regulatory / industry guidance article: What are the tasks and functions of the Quality Assurance department / Quality Unit? (GMP-Compliance.org analysis). Detailed industry analysis of QA responsibilities including EU GMP references. Why: Breaks down responsibilities and regulatory citations for QA/quality unit in manufacturing and API production. ECA Academy.

16. Review article: Quality Control & Quality Assurance in Pharmaceuticals — A Comprehensive Review (IJPRA Journal / 2023 PDF). Recent review covering QA/QC roles, regulatory agencies, batch release and laboratory practices. Why: Consolidates current practice and includes examples of QC testing programs and regulatory context. IJPRA Journal

17. Practical guide blog & industry pieces (examples): Quality Control (QC) in the Pharmaceutical Industry – Compliance Quest (2023) and similar industry guidance. Why: Offers step-by-step descriptions of QC responsibilities, sample workflows, and testing program ideas — practical for implementing lab procedures. Compliance Quest.

18. Industry primer: Quality Assurance vs Quality Control in GMP (Ministers / Infotech / other industry blogs 2024–2025). Why: Clear practical distinctions and examples of responsibilities, helpful for training and cross-functional team alignment. GMP Insiders+1

19. Recent advances review: *Recent Advances in Quality Control and Quality Assurance* (RRJOPS 2025). Why: Discusses new analytical technologies, digitization of labs, data integrity and trending regulatory expectations — handy for modernization plans. STM Journals

20. Regulatory textbook: Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality Control (older classic editions & Google Books entries). Why: Useful in understanding the evolution of GMP and the QA unit's historical/legal roles. Google Books+1

21. Practical QA/QC implementation resource: The Full Guide to QMS in Pharma for QA Professionals (Scaife blog / 2025). Why: Stepwise QMS implementation advice, template ideas for change control, audit scheduling and training matrices. Good for operational QA managers. scilife.io.

22. Textbook / reference: Good Quality Practice (GQP) in Pharmaceutical Manufacturing (Eureka Select / Bentham entry). Why: Provides real-world examples and checklists to implement GQP and QA oversight. Eureka Select.
23. Practical duties note: Duties of key personnel in GMP — Production, QC and Qualified Person (inspired pharma article, 2012). Why: Breaks down statutory and practical duties of QA and QC personnel under regulatory frameworks (helpful for org charts and role definitions). Inspired Pharma.
24. Academic review: A Review on Quality Assurance and Quality Management System in Pharmaceutical Industry (IJPS / review article). Why: Discusses QA systems, quality metrics, and management-level responsibilities for implementing and monitoring QA effectiveness. Useful for audits and continuous improvement planning.